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Abstract. In this paper, we report our work on high precision accelerator cavity design using the parallel eigensolver 
Omega3P. Omega3P is the software implementation of the Filtering algorithm [1] for solving large generalized 
eigenproblems. With Omega3P, we have successfully solved many accelerator cavity design problems with high precision 
and good parallel performance. 
 
1 Introduction 
 
Generalized eigenproblems of the form K x = λ M x arise naturally in accelerator cavity design problems. These 
eigenproblems have the following properties: the stiffness matrix K and the mass matrix M are real symmetric, and matrix 
M is positive definite. Usually a number of interior eigenpairs of K x = λ M x are desired. 
 
The matrix eigenproblems are generated from finite element methods, and therefore the matrices are very sparse, often less 
than 20 non-zero elements per row for linear finite elements. To achieve the accuracy required in accelerator cavity designs, 
the matrices are often the size of millions by millions. 
 
A fast, accurate and parallel eigensolver is highly desirable for the matrix eigenproblems. The parallel eigensolver 
Omega3P and its theoretical foundation, the Filtering algorithm, are jointly developed by SCCM and SLAC in Stanford 
University for this purpose. 
 
The rest of the paper is organized as follows. In section 2, we study the numerical properties of the eigenproblems in 
accelerator cavity designs. In section 3, we describe the Filtering algorithm, which serves as the theoretical foundation of 
Omega3P. In section 4, we describe the software implementation and the performance of Omega3P, and in section 5, we 
make concluding remarks.  
 
2 Numerical Properties of Our Eigenproblems 
 
Given the geometry of a conductive cavity ΩΩΩΩ with its material properties, permittivity ε and permeability µ, we desire to 
find the eigenfrequencies ω and the corresponding field distributions E that satisfy the curl-curl formulation of Maxwell's 
equation in ΩΩΩΩ. 
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For problems that we consider, the dielectric materials are lossless and uniformly distributed in ΩΩΩΩ, and therefore the 
eigenvalues of (2.1) are ω2εµ. It is apparent that all eigenvalues of (2.1) are nonnegative, and their corresponding 
eigenvectors are real [2]. It can be shown that (2.1) has infinite number of solutions when ω is zero. It is also clear that the 
largest ω of (2.1) is infinity. In practice, only the first few of non-zero eigenvalues are of interest for cavity design purposes. 
 
The variational representation of the curl-curl Maxwell’s equation (2.1) is:  
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The discretization of finite element equation (2.2) leads to the following matrix eigenproblem: 
 

   x xλ=K M           (2.3). 
 
In the matrix eigenproblem (2.3), stiffness matrix K and mass matrix M are real symmetric and of the same sparsity pattern, 
and matrix M is positive definite. Without finite element discretization errors, matrix K shall be positive semi-definite. In 
practice, due to finite element discretization errors, matrix K is near positive semi-definite.  
 
Eigenvalues of the matrix eigenproblem (2.3) are the discrete version of the eigenvalues of the Maxwell’s equation (2.1), 
and therefore have the following properties. 
 
1. A number of the eigenvalues of the matrix eigenproblem (2.3) are very close to zero.  
2. Excluding those “zero” eigenvalues, the first few smallest eigenvalues and their corresponding eigenvectors are 

wanted. Including the “zero” eigenvalues, the first few “nonzero” interior eigenvalues and their corresponding 
eigenvectors are wanted. 

3. The largest eigenvalues of (2.3) are much larger than the eigenvalues of interest. 
 
It is worth noting that these properties are quite general in cavity designs and other structural simulations.  
 
We shall now study these characteristic properties through our model problem. For simplicity, in our model problem, ΩΩΩΩ is 
a 0.5m x 2m x 1m rectangular box, with vacuum inside (ε = µ =1).  
 

                      
 

  
2

1

0.5

y
ΩΩΩΩz

x
 

 
The problem has analytical solutions for its eigenvalues given in (2.4), where c is the speed of light; m, n, p are integers. 
The smallest nonzero eigenvalue eigenvalue λ0 is 12.33, and it corresponds to (m, n, p) = (0, 1, 1). 
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When the edge based linear finite element method is applied on a rather coarse tetrahedral mesh (233 mesh points) for ΩΩΩΩ, 
the dimension of the resulting matrices, i.e., matrix K and M, is 704, and there are about 13 nonzero elements per row for 
each matrix. We will use this model problem throughout the rest of the paper. 



 

 
The following spectrum plot of the model problem exhibits the characteristic spectrum properties of the structural 
simulation problems. 
 

Figure 1: Spectrum distribution of the model problem 

 
 
It is this spectrum distribution that poses significant difficulty to many existing eigenvalue algorithms especially when the 
problem size is big. The challenge was the motivation of the Filtering algorithm. 
 
3 The Filtering Algorithm 
 
The Filtering algorithm was developed particularly for solving large generalized eigenproblems from Maxwell’s equations. 
 
The Filtering algorithm is a hybrid scheme that consists of two techniques: Inexact Shift and Invert Lanczos (ISIL) for 
obtaining eigenvector approximations efficiently; and Jacobi Orthogonal Component Correction (JOCC) algorithm for 
refining the eigenvector approximations. The first technique is regarded as the filtering process to get good eigenvector 
approximations. The second technique is only required when the eigenvector approximations from the ISIL filtering 
process is not accurate enough. 
 
Mathematically, Shift and Invert Lanczos (SIL) algorithm is ideal for solving interior eigenproblems. It converts interior 
eigenvalues closest to the shift σ into the largest ones of new eigenproblems, and the largest eigenvalues are well separated 
from other eigenvalues. The spectrum transformation is written as follows. 
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Figure 2: Spectral transformation by Shift and Invert 

 



 

The spectral transformation (3.1) amplifies the magnitude of eigenvalues close to σ, and dampens others away from σ. 
When the shift σ = 14, which is chosen to be close to the first nonzero eigenvalue λ0 in the analytical solution (2.4) of the 
model problem, the transformed spectrum of the model problem is shown in Figure 2. 
 
The SIL algorithm has a fatal drawback. At each iteration step, a shifted linear system, (K-σM) x = b, needs to be solved 
accurately. Unfortunately the shifted matrix is usually large and ill conditioned in our problems, and therefore very difficult 
to solve.  
 
The reason why the SIL algorithm is so effective is that the spectral transformation from the Shift Invert process makes the 
eigenvalues of interest distinctive from other eigenvalues. The spectral transformation can be regarded a band pass filter 
that keeps the eigenvalues of interest. In fact, all other Krylov subspace methods obey the filter model shown in Figure 3. 
 

Figure 3: Filter model for Krylov subspace methods 

 
It is shown [1] that for eigenproblems arising from Maxwell’s equations, a filter similar to the filter in the SIL algorithm 
can be easily obtained by solving the same shifted linear systems inexactly. We call this filter Inexact Shift Invert Lanczos 
(ISIL) filter.  
 
It is also shown [1] that the difference between the SIL filter and the ISIL filter are bounded by the residual tolerance for 
solving the shifted linear systems inexactly. This implies that even if the shifted linear systems are solved inexactly with a 
residual tolerance of 0.01, 99% of the filtering result that the SIL filter can produce is already achieved by the ISIL filter. 
Therefore we expect that the SIL filter and the ISIL filter will give almost identical performance in getting eigenvector 
approximations. 
 
Solving the shifted linear system inexactly with a residual tolerance only at 0.01 requires significantly less amount of 
computational work and poses much smaller computational challenge than that in the SIL filter where the shifted linear 
systems are solved exactly. More importantly, when problems are large and the shifted linear systems are ill conditioned, it 
becomes unrealistic to apply the SIL filter, while the ISIL filter is much more practical. 
 
The ISIL filter stagnates after a good approximation of the desired eigenvector is reached, because at some point the 
current eigenvector approximation is so “good” for the ISIL filter that additional filtering steps will not help to further 
refine the approximation.  
 
To obtain a more accurate solution than that from the ISIL filter, we use a Newton type scheme, the JOCC (Jacobi 
Orthogonal Component Correction) algorithm, to refine the eigenvector approximation. In the JOCC algorithm, similar 
shifted linear systems need to be solved at each iteration step. However, given a good eigenvector approximation, the 
JOCC refinement process will have super linear convergence even if the shifted linear systems are only solved 
approximately, and only a very small number (usually 2 or 3) of JOCC steps are needed to reach a high precision for the 
eigenvector. 
 
In the model problem, the shifted matrix, K-σM, is small enough to be solved accurately. We set the residual tolerance of 
solving the shifted linear systems in the SIL algorithm to be 1e-10 to achieve roughly the same convergence rate as the 
case of explicitly inverting the shifted matrix. We set the residual tolerance for solving the shifted linear systems in the 
ISIL filter and the JOCC refiner to be both 1e-2. 
 
The comparison between the two algorithms in terms of both number of outer iterations and computational time is shown 
in Figure 4.  
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Figure 4: Comparison between ISIL+JOCC and ESIL 

 
 
We notice three interesting phenomena in the comparison:  
 
1. The convergence curve starts from 0 for the Filtering algorithm versus 1 for the SIL algorithm, because the ISIL filter 

makes use of the last Ritz vector, which is not included into the current Ritz vector space in the SIL algorithm.  
2. The accuracy of the ISIL filter at the 4th interaction is about the same as that of the SIL algorithm at the 5th iteration, 

which verifies that the ISIL filter and the SIL filter almost have identical filtering effects to obtain a good eigenvector 
approximation.  

3. The last two JOCC refinement steps clearly outperform the SIL algorithm.  
 
The Filtering algorithm outperforms the SIL algorithm even in terms of number of outer iterations. In terms of the CPU 
time, the computational cost of the Filtering algorithm is about one third that of the SIL algorithm.  
 
4 Omega3P and its Applications in Accelerator Cavity Designs 
 
Parallel computing is essential for solving large problems. It has been our main objective in developing the Filtering 
algorithm. Solving the shifted linear systems of the ISIL filter and the JOCC refiner is the dominant computational cost. 
Therefore the parallel implementation of the Filtering algorithm is reduced to parallel preconditioning and matrix-vector 
multiplication, which are well addressed by many efforts in the parallel computing community. 
 
The fact that the shifted linear systems in the Filtering algorithm are solved only approximately makes it very suitable for 
parallel computing. Many iterative linear solvers in the public domain are capable of solving such systems approximately. 
We build Omega3P, the parallel implementation of the Filtering algorithm, on the Aztec library [6].  
 
Omega3P is the complete software package for accelerator cavity modeling on parallel platforms. Besides the eigensolver, 
which is the parallel implementation of the Filtering algorithm, Omega3P has the following components. 
 
1. DistMesh, for parallel and distributed mesh partitioning and distributing. 
2. Parallel finite element formulation for distributed matrix assembling. 
3. Parallel post-processing for result output and visualization. 
 
Omega3P works on most of the parallel platforms available today. 
 
1. MPP, massively parallel processor machines, such as CrayT3E and SP2 in NERSC. 
2. SMP, symmetric multiple processor machines, such as SUN Enterprise 10000. 
3. LINUX PC Cluster, such as the morab cluster in the Advance Computation Department at SLAC. 
 
Omega3P has successfully solved large eigenproblems for accelerator cavity design applications. Figure 5 is a realistic 
DDS (Damped Detuned Structure) design in the NLC (Next Linear Collider) Project at SLAC. It is a complex 3D structure, 



 

consisting of 206 cells, whose fundamental mode needs to be calculated accurately. Figure 5 shows the geometry of the 
whole DDS and the mesh used in our computation for one of such cells. The resulting matrices are of dimension 1,066,302. 
The ISIL filter alone works well for this problem. With the shifted linear systems being solved to the residual tolerance of 
1e-2, the solver converges to the required accuracy after 4 iteration steps without the help of JOCC refiner.  
 

Figure 5: SLAC DDS 
Whole DDS Mesh for 1/8 of 11/2 RDDS Cells 

 
 
Omega3P exhibits good speedup and scalability as the number of processors increases. The performance of our solver for 
the above problem on CrayT3E is given in Figure 6. It takes less than seven minutes for the solver to converge on 128 
processors. The speedup of Omega3P on 128 processors is 110. 
 

            Figure 6: Parallel performance on CrayT3E 

 
 
The dimensions of the actual cells were designed using Omega3P. The computation was carried out on a larger matrix 
eigenproblem whose size is about 5 million by 5 million. The cells have been manufactured, and their experimental 
measurements agree well with Omega3P numerical predictions. 
 
6 Concluding Remarks 
 
We have developed the Filtering algorithm particularly for solving large eigenproblems arising from accelerator cavity 
designs. Based on the Filtering algorithm, we have implemented a complete parallel software package Omega3P for 
accelerator cavity modeling. Omega3P exhibits satisfactory convergence behavior and parallel performance, and it is being 
widely used by accelerator design scientists in the accelerator design community. 
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